Convex Risk Minimization and Conditional Probability Estimation

نویسندگان

  • Matus Telgarsky
  • Miroslav Dudík
چکیده

This paper proves, in very general settings, that convex risk minimization is a procedure to select a unique conditional probability model determined by the classification problem. Unlike most previous work, we give results that are general enough to include cases in which no minimum exists, as occurs typically, for instance, with standard boosting algorithms. Concretely, we first show that any sequence of predictors minimizing convex risk over the source distribution will converge to this unique model when the class of predictors is linear (but potentially of infinite dimension). Secondly, we show the same result holds for empirical risk minimization whenever this class of predictors is finite dimensional, where the essential technical contribution is a norm-free generalization bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization

We develop and analyze an algorithm for nonparametric estimation of divergence functionals and the density ratio of two probability distributions. Our method is based on a variational characterization of f -divergences, which turns the estimation into a penalized convex risk minimization problem. We present a derivation of our kernel-based estimation algorithm and an analysis of convergence rat...

متن کامل

Statistical Behavior and Consistency of Classification Methods Based on Convex Risk Minimization

We study how closely the optimal Bayes error rate can be approximately reached using a classification algorithm that computes a classifier by minimizing a convex upper bound of the classification error function. The measurement of closeness is characterized by the loss function used in the estimation. We show that such a classification scheme can be generally regarded as a (nonmaximum-likelihoo...

متن کامل

Portfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization

Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...

متن کامل

An Infinity-sample Theory for Multi-category Large Margin Classification

The purpose of this paper is to investigate infinity-sample properties of risk minimization based multi-category classification methods. These methods can be considered as natural extensions to binary large margin classification. We establish conditions that guarantee the infinity-sample consistency of classifiers obtained in the risk minimization framework. Examples are provided for two specif...

متن کامل

On Consistent Surrogate Risk Minimization and Property Elicitation

Surrogate risk minimization is a popular framework for supervised learning; property elicitation is a widely studied area in probability forecasting, machine learning, statistics and economics. In this paper, we connect these two themes by showing that calibrated surrogate losses in supervised learning can essentially be viewed as eliciting or estimating certain properties of the underlying con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015